Skip to main content

Schrodinger's cat gets a reality check

Schrodinger's cat gets a reality check

19 hours ago by Eric Cavalcanti, The Conversation
Schrödinger's cat gets a reality check
If kitty goes in, will she really be alive and dead? Credit: Robert Couse-Baker/Flickr, CC BY-SA
It's a century-old debate: what is the meaning of the wave function, the central object of quantum mechanics? Is Schrödinger's cat really dead and alive?
I was recently involved in an experiment conducted by Andrew White's Quantum Technology Lab at the University of Queensland that has now provided the most significant evidence on that question in years. And it doesn't look good for the cat.
To understand the importance of this result, we need to delve into its history. At the root of there is something of a reality crisis. Multiple interpretations of the theory exist, and they paint very different pictures of the world. One of the major contentions centres around what we should make of the quantum wave function.
In short, the wave function describes the of a physical system. But unlike in classical physics, where a complete specification of a state determines all of its properties (for example, a particle's position and velocity), the quantum state in general only gives probabilistic predictions.
In fact, the wave function seems to describe bizarre situations, like physical systems existing simultaneously in multiple states, such as different positions or velocities. It gives very precise probabilities for the possible outcomes of laboratory experiments, but it defies an intuitive interpretation.
Some of the founders of the theory, such as physicists Niels Bohr and Werner Heisenberg, suggested that until an observation of one or another property is made, questions like "where is this particle, really?" simply don't make sense.
Under this view, it's not that the particle is really here or there (and we just don't know until we look). Rather, for Bohr the very meaning of "position" depends on the existence of a measurement that detects it.
Physicist Erwin Schrödinger's famous thought experiment was designed to show how, if quantum mechanics is taken literally and to its ultimate implications, even macroscopic systems, like cats, would be in such "superpositions" of states – such as the cat being both dead and alive – which is an apparently absurd conclusion.
It's all in your head
An indeterminate reality was unacceptable for Albert Einstein, who famously said: "Do you really believe the moon exists only when you look at it?" Einstein believed instead that the wave function should be understood as representing our limited information about the actual state of physical systems.
A first blow to Einstein's view came in 1964, when John S Bell showed that any model that describes an objective reality underlying quantum mechanics must include some sort of non-local connection between distant systems, in an apparent violation of Einstein's own theory of relativity.
And contrary to Einstein's wish, in all objective interpretations known to date (such as the Many Worlds interpretation, objective collapse models, and de Broglie-Bohm theory), the wave function is a real physical object (with one very recent exception, where the wave function plays no explicit role, but the cat is literally dead and alive in ).
In 2007, however, Robert Spekkens from the Perimeter Institute published a seminal work showing that it was possible to reproduce many of the counter-intuitive aspects of with a model where the wave function plays the "epistemic" role Einstein longed for.
Other fragments of quantum theory were later shown to fit similar models, but the question was open whether or not this was possible for all of quantum theory. Could Einstein's dream be revived?
To understand what this kind of model is, imagine I hold two decks of cards: one contains only red cards, the other only aces, and I ask you to pick a card from one, without knowing which is which.
In an epistemic interpretation, the wave function would play the role of the deck you pick the card from. It gives you some information about the card – like if you pick from the aces deck, you're sure to pick an ace of some sort – but this information is not itself a property of the card. In fact, it is possible that you have picked an ace of hearts, which is compatible with both decks.
A wake-up call came in 2012, when Matthew Pusey, Jonathan Barrett and Terry Rudolph showed that in any objective model of quantum theory, the wave function must be a real property of individual systems, unlike the deck of cards. But, their theorem had an extra assumption that has called the implications of the theorem into question.
Reality check
However, a series of theorems published within the last year, starting with work from myself and colleagues, puts strong bounds on the viability of epistemic models, even without those extra assumptions.
These theorems consider the fact that some pairs of quantum states cannot be distinguished on a single experiment. This is analogous to not always being able to tell whether a randomly picked card came from the red deck or the ace deck. If you pick a non-ace card, you can be sure it came from the red deck. If you pick a black ace, you can be sure it came from the ace deck.
But if it's an ace of hearts or an ace of diamonds, it could have come from either. Counting the cards in the decks, we can determine how often this is supposed to happen.
In an epistemic interpretation, the fact we can't distinguish quantum states should be at least partially accounted for in this way. But the theorems show that this explanation simply cannot work. For some specially constructed quantum states, the "decks" corresponding to them cannot have anywhere near the right amount of cards in common, so to speak.
These predictions were partially confirmed by the experiment I was involved with, performed by Martin Ringbauer and the Brisbane team led by Alessandro Fedrizzi. They followed an improved version of our theorem due to Cyril Branciard, a co-author in the study.
The experiment involved preparing single photons (particles of light) in those specially designed states and subjecting them to a number of alternative measurements. The results give bounds on how well a model like the one outlined above can describe the statistics they observe.
This represents the first large class of quantum models to be ruled out since Bell's theorem started being tested in the 1980s.
If further experiments confirm the implications of the theorems, viable epistemic models of quantum mechanics will be essentially ruled out. If we want an objective reality, à la Einstein, the must be real, dead and alive cats and all.
But there are alternatives. One could be to reconsider assumptions of the framework used to derive the theorems, perhaps by introducing backwards-in-time causality or parallel universes. However, no approaches of this form have yet managed to produce an epistemic interpretation.
Or else, we can deny that a purely objective description is possible at all. However it may be, the weirdness of is here to stay.
Source: The Conversation search and more info website
4.5 /5 (17 votes)
This story is published courtesy of The Conversation (under Creative Commons-Attribution/No derivatives).
The Conversation

Comments

Popular posts from this blog

fix idm integration on chrome

Chrome Browser Integration I do not see IDM extension in Chrome extensions list. How can I install it?  How to configure IDM extension for Chrome? Please note that all IDM extensions that can be found in Google Store are fake and should not be used. You need to install IDM extension manually from IDM installation folder. Read in step 2 how to do it . 1. Please update IDM to the latest version by using  "IDM Help->Check for updates..."  menu item 2.  I don't see  "IDM Integration module"  extension in the list of extensions in  Chrome . How can I install it? Press on  Chrome  menu ( arrow 1  on the image), select  "Settings"  menu item ( arrow 2  on the image) and then select  "Extensions"  tab ( arrow 3  on the image). After this open IDM installation folder ( "C:\Program Files (x86)\Internet Download Manager"  by default,  arrow 4  on the image) and drag and drop  "IDMGCExt.crx"  ( arrow 5  on the image) file int

Hidden Wiki

Welcome to The Hidden Wiki New hidden wiki url 2015 http://zqktlwi4fecvo6ri.onion Add it to bookmarks and spread it!!! Editor's picks Bored? Pick a random page from the article index and replace one of these slots with it. The Matrix - Very nice to read. How to Exit the Matrix - Learn how to Protect yourself and your rights, online and off. Verifying PGP signatures - A short and simple how-to guide. In Praise Of Hawala - Anonymous informal value transfer system. Volunteer Here are five different things that you can help us out with. Plunder other hidden service lists for links and place them here! File the SnapBBSIndex links wherever they go. Set external links to HTTPS where available, good certificate, and same content. Care to start recording onionland's history? Check out Onionland's Museum Perform Dead Services Duties. Introduction Points Ahmia.fi - Clearnet search engine for Tor Hidden Services (allows you

Explainer: The nico-teen brain

Explainer: The nico-teen brain The adolescent brain is especially vulnerable to the addictive effects of nicotine BY  TERESA SHIPLEY FELDHAUSEN   7:00AM, AUGUST 19, 2015 Nicotine (black triangle towards center left) tricks the nerve cell (neuron) into sending a message to release more dopamine (yellow dots). Those molecules enter the space (synapse) between one nerve cell and the next. When they get picked up by neighboring cells, this gives users a feel-good high. It also creates the risk of addiction and other health problems.  EMail  Print  Twitter  Facebook  Reddit  Google+ NATIONAL INSTITUTE ON DRUG ABUSE, ADAPTED BY J. HIRSHFELD Nicotine is the addictive chemical in tobacco smoke and e-cigarette vapors. And doctors say the teenage brain is no place for it to end up. Nicotine can reach the brain within seven seconds of puffing on a cigar, hookah, cigarette or electronic cigarette. The area of the brain responsible f