Skip to main content

Physical Address Extension

Physical Address Extension

From Wikipedia, the free encyclopedia
In computingPhysical Address Extension (PAE) is a memory management feature for the IA-32 architecture, first introduced in the Pentium Pro. It defines a page table hierarchy of three levels, with table entries of 64 bits each instead of 32, allowing these CPUs to access a physical address space larger than 4 gigabytes (232 bytes).
The page table structure used by x86-64 CPUs when operating in 64-bit mode further extends the page table hierarchy to four levels, extending the virtual address space, and uses additional physical address bits at all levels of the page table, extending the physical address space. It also uses the topmost bit of the 64-bit page table entry as an NX bit.


PAE was first implemented in the Intel Pentium Pro in 1995,[1] although the accompanying chipsets usually lacked support for the required extra address bits.[2]
PAE is supported by Intel Pentium Pro and later Pentium-series processors except most 400 MHz-bus versions of the Pentium M.[citation needed] It was also available on AMD processors including the AMD Athlon[3] (although the chipsets for these were limited to 4 GB RAM[4]) and later AMD processor models.
When AMD defined their AMD64 architecture as an extension of x86, they defined an enhanced version of PAE to be used while the processor was in 64-bit mode ("long mode"). It supports up to 48-bit virtual addresses,[5](p120) 52-bit physical addresses,[5](p24) and includes NX bit functionality. This version of PAE is the mandatory memory paging model inlong mode on x86-64 processors; there is no "non-PAE mode" while in long mode.[6] The documentation for "Intel 64", the Intel version of x86-64, refers to these page table formats as "IA-32e paging" rather than "PAE".[7]


With PAE, IA-32 architecture is augmented with additional address lines used to select the additional memory, so physical address size increases from 32 bits to 36 bits. This increases the physical memory addressable by the system from 4 GB to 64 GB. The 32-bit size of the virtual address is not changed, so regular application software continues to use instructions with 32-bit addresses and (in a flat memory model) is limited to 4 gigabytes of virtual address space. Operating systems supporting this mode use page tables to map the regular 4 GB address space into the physical memory, which, depending on the operating system, may be as big as 64 GB. The mapping is typically applied separately for each process, so that the extra memory is useful even though no single regular application can access it all simultaneously.
Later work associated with AMD's development of x86-64 architecture expanded the theoretical possible size of physical addresses to 52 bits.

Page table structures[edit]

In protected modex86 processors use a two-level page translation scheme, where the control register CR3 points to a single 4 KB long page directory divided into 1024 × 4 byte entries that point to 4 KB long page tables, similarly consisting of 1024 × 4 byte entries pointing to 4 KB long pages.
Enabling PAE (by setting bit 5, PAE, of the system register CR4) causes major changes to this scheme. By default, the size of each page remains as 4 KB. Each entry in the page table and page directory becomes 64 bit long (8 bytes), instead of 32 bits, to allow for additional address bits. However, the size of tables does not change, so both table and directory now have only 512 entries. Because this allows only one quarter of the entries of the original scheme, an extra level of hierarchy has been added, so CR3 now points to Page Directory Pointer Table, a short table containing four pointers to page directories.
The entries in the page directory have an additional flag in bit 7, named PS (for page size). If the system has set this bit to 1, the page directory entry does not point to a page table but to a single, large 2 MB page (Page Size Extension).
In all page table formats supported by x86 and x86-64, the 12 least significant bits of the page table entry are either interpreted by the memory management unit or are reserved for operating system use. In processors that implement the "no-execute" or "execution disable" feature, the most significant bit (bit 63) is the NX bit. The next eleven most significant bits (bits 52 through 62) are reserved for operating system use by both Intel and AMD's architecture specifications. Thus, from 64 bits in the page table entry, 12 low-order and 12 high-order bits have other uses, leaving 40 bits (bits 12 though 51) for the physical page number. Combined with 12 bits of "offset within page" from the page table entry, a maximum of 52 bits are available to address physical memory. This allows a maximum RAM configuration of 252 bytes, or 4 petabytes (about 4.5×1015 bytes).
On x86-64 processors in native long mode, the address translation scheme uses PAE but adds a fourth table, the 512-entry page-map level 4 table, and extends the page directory pointer table to 512 entries instead of the original 4 entries it has in protected mode. Currently 48 bits of virtual page number are translated, giving a virtual address space of up to 256 TB.[5](p120) In the page table entries, in the original specification, 40 bits of physical page number are implemented.


See also: CPUID
Software can identify via the CPUID flag PAE whether a CPU supports PAE mode or not. A free-of-charge program for Microsoft Windows is available which will list many processor capabilities, including PAE support.[8] In Linux, commands such as cat /proc/cpuinfo can list the pae flag when present,[9] as well as other tools such as theSYSLINUX Hardware Detection Tool.
To use PAE, motherboard and operating system support is required.

Operating system support[edit]

Microsoft Windows[edit]

Microsoft Windows supports PAE if booted with the appropriate option, but according to Geoff Chappell, Microsoft may limit 32-bit versions of Windows to 4 GB as a matter of its licensing policy.[10] Microsoft Technical Fellow Mark Russinovich says that some drivers were found to be unstable when encountering physical addresses above 4 GB.[11]
The following table shows the hard memory limits for IA-32-based versions of Microsoft Windows, with PAE enabled:
Memory limits on 32-bit editions of Microsoft Windows, with PAE support[12][13][14]
Windows VersionMemory limit
Windows 2000 Professional, Server4 GB
Windows 2000 Advanced Server8 GB
Windows 2000 Datacenter32 GB
Windows XP Starter512 MB
Windows XP (Other editions)4 GB
Windows Server 2003 Web SP22 GB
Windows Server 2003 Standard SP24 GB
Windows Server 2003 Enterprise/Datacenter SP264 GB
Windows Storage Server 2003 Enterprise8 GB
Windows Storage Server 2003 (other editions)4 GB
Windows Home Server4 GB
Windows Vista Starter1 GB
Windows Vista (Other editions)4 GB
Windows Server 2008 Standard, Web4 GB
Windows Server 2008 Enterprise, Datacenter64 GB
Windows 7 Starter2 GB
Windows 7 (Other editions)4 GB
Windows 8 (all editions)4 GB
The original releases of Windows XP and Windows XP SP1 used PAE mode to allow RAM to extend beyond the 4 GB address limit. However, it led to compatibility problems with 3rd party drivers which led Microsoft to remove this capability in Windows XP Service Pack 2. Windows XP SP2 and later, by default, on processors with the no-execute (NX) orexecute-disable (XD) feature, runs in PAE mode in order to allow NX.[15] The no execute (NX, or XD for execution disable) bit resides in bit 63 of the page table entry and, without PAE, page table entries on 32-bit systems have only 32 bits; therefore PAE mode is required in order to exploit the NX feature. However, "client" versions of 32-bit Windows (Windows XP SP2 and later, Windows Vista, Windows 7) limit physical address space to the first 4 GB for driver compatibility [11] via the licensing limitation mechanism,[10] even though these versions do run in PAE mode if NX support is enabled.
Windows 8 will only run on processors which support PAE, in addition to NX and SSE2.[16]

OS X[edit]

All Intel versions of OS X support PAE and the NX bitMac Pro and Xserve systems can use up to 64 GB of RAM.[17]


The Linux kernel includes full PAE mode support starting with version 2.3.23,[18] enabling access of up to 64 GB of memory on 32-bit machines. A PAE-enabled Linux kernel requires that the CPU also support PAE. The Linux kernel supports PAE as a build option and major distributions provide a PAE kernel either as the default or as an option.
The NX bit feature requires a kernel built with PAE support.[19]
Linux distributions now commonly use a PAE-enabled kernel as the default, a trend that began in 2009.[20] As of 2012 many, including Red Hat Enterprise Linux / CentOSUbuntu(and derivatives like Linux Mint),[21][22] have stopped distributing non-PAE kernels, thus making PAE hardware mandatory.
Distributions that still provide a non-PAE option, including Debian (and derivatives like LMDE), Slackware, and LXLE typically do so with "i386", "i486" or "retro" labels.[23][24]


FreeBSD and NetBSD also support PAE as a kernel build option. FreeBSD supports PAE in the 4.x series starting with 4.9, in the 5.x series starting with 5.1, and in all 6.x and later releases. Support requires the kernel PAE configuration-option. Loadable kernel modules can only be loaded into a kernel with PAE enabled if the modules were built with PAE enabled; the binary modules in FreeBSD distributions are not built with PAE enabled, and thus cannot be loaded into PAE kernels. Not all drivers support more than 4 GB of physical memory; those drivers won't work correctly on a system with PAE.[25]
OpenBSD has had support for PAE since 2006 with the standard GENERIC i386 kernel. GeNUA mbH supported the initial implementation.[26] Since release 5.0 PAE has had a series of changes, in particular changes to i386 MMU processing for PMAP, see pmap(9).[27]
Solaris supports PAE beginning with Solaris version 7. However, third-party drivers used with version 7 which do not specifically include PAE support may operate erratically or fail outright on a system with PAE.[28]
Haiku added initial support for PAE sometime after the R1 Alpha 2 release. With the release of R1 Alpha 3 PAE is now officially supported.

Popular posts from this blog

Hidden Wiki

Welcome to The Hidden WikiNew hidden wiki url 2015 http://zqktlwi4fecvo6ri.onion Add it to bookmarks and spread it!!!
Editor's picks Bored? Pick a random page from the article index and replace one of these slots with it.
The Matrix - Very nice to read. How to Exit the Matrix - Learn how to Protect yourself and your rights, online and off. Verifying PGP signatures - A short and simple how-to guide. In Praise Of Hawala - Anonymous informal value transfer system. Volunteer Here are five different things that you can help us out with.
Plunder other hidden service lists for links and place them here! File the SnapBBSIndex links wherever they go. Set external links to HTTPS where available, good certificate, and same content. Care to start recording onionland's history? Check out Onionland's Museum Perform Dead Services Duties. Introduction - Clearnet search engine for Tor Hidden Services (allows you to add new sites to its database). DuckDuckGo - A Hidden S…


Good News [May 08, 2015]: IDM developers got smarter, but the crackers are always a step ahead. Follow this article and send an email to if you are desperate. I can NOT post any crack here for legal reasons. Happy Downloading with IDM. ;) *********** first tip is to use latest crack for idm from idm universal web crack and make sure u are using all latest vers I am sure many of us are too much dependent on Internet Download Manager a.k.a. IDM. The main reason didn’t permanently switch to linux was IDM. I mainly use it for batch downloading and download streaming videos. Till yesterday, IDM was working fine with me (of course with fake serial numbers, keygen, crack, patch etc. which could be found with little effort). But few days ago, with the latest update version 6.18 build 7 (released on Nov 09, 2013) Internet Download Manager was literally had a breakthrough and crushed all the serial numbers, …

Mouse, touchpad, and keyboard problems in Windows

Mouse, touchpad, and keyboard problems in Windows Introduction This tutorial is designed to help you identify and fix common mouse, touchpad, and keyboard problems in Windows. It doesn't cover device problems related to specific programs. Mouse, touchpad, and keyboard problems can have a number of causes: Cables that aren't connected properly Incorrect device settings Missing updates Corrupted or incompatible drivers Hardware problems Check hardware Many mouse, touchpad, and keyboard problems are caused by hardware that isn't set up properly. Here's some information about how to check your device, make sure cables are connected properly, make sure the hardware has power, and check the settings. Make sure cables are connected properly Check that all cables are plugged in to the correct locations. This can include mouse and keyboard, PS2 and USB cables, and, in some cases, external USB touchpad cables. Disconnect USB cables and wait for a short time for the device drive…