Skip to main content

Physicists Unveil First Quantum Interconnect

One of the unsung workhorses of modern technology is the humble interconnect. This is essentially a wire or set of wires that link one part of an electronic system to another. In ordinary silicon chips, interconnect can take up most of the area of a chip; and the speed and efficiency with which information can travel along these interconnects, is a major limiting factor in computing performance.
So it’s no wonder that physicists and engineers are creating new generations of interconnect that will become the backbone of information processing machines of the future.
One of the most promising forms of number crunching is the quantum computer and its various associate quantum technologies, such as quantum communication, quantum cryptography, quantum metrology, and so on.
Physicists have made great strides in building proof-of-principle devices that exploit the laws of quantum physics to perform feats that would be impossible with purely classical mechanics. And yet a significant problem remains. These devices must work in isolation since nobody has perfected a way of joining them together effectively.
Today, that changes thanks to the work of Mark Thompson at the University of Bristol in the U.K. and a few pals around the world. These guys have built and tested a quantum interconnect that links separate silicon photonic chips and carries photons and, crucially, entanglement between them.
Quantum interconnect is a tricky proposition because of the fragile nature of entanglement, the bizarre way in which quantum particles share the same existence, even when they are far apart.
However, this state is extremely brittle — sneeze and it disappears. So quantum interconnect must preserve entanglement while transporting it from one place to another.
Thompson and co do this using a simple optical fiber and a clever quantum trick. Their silicon chips have two sources of photons that travel along photonic channels that overlap. When photons meet in the region of overlap, they become entangled and then carry this entanglement along separate paths through the device.
The role of the quantum interconnect is to transmit the photons to another chip where they retain their path-encoded entanglement. But how can this be done when the interconnect consists of a single path along a fiber?
The trick that Thomson and pals have perfected is to convert the path-entanglement into a different kind of entanglement, in this case involving polarization. They do this by allowing the path-entangled photons to interfere with newly created photons in a way that causes them to become polarized. This also entangles the newly created photons, which pass into the optical fiber and travel to the second silicon photonic chip.
The second chip reverses this process. There, the polarized-entangled photons are converted back into the path-entangled variety which then continue into the device as if they had come directly from the first chip.
The team has experimented with this proof-of-principle device and show that the entanglement is preserved throughout. “We demonstrate high-fidelity entanglement throughout the generation, manipulation, interconversion, distribution and measurement processes, across two integrated photonic circuits, successfully demonstrating the chip-to-chip quantum photonic interconnect,” they say.
It’s not perfect of course. Thompson and co admit they need to reduce the losses in the machine. But they say all this can be improved in future by optimizing various aspects of the design.
Overall, that’s an important step forward. Quantum interconnect is an enabling technology that should help to make possible a wide variety of new quantum devices that require different quantum subsystems to be linked together.
Ref: arxiv.org/abs/1508.03214 : Quantum Photonic Interconnect

Comments

Popular posts from this blog

fix idm integration on chrome

Chrome Browser Integration I do not see IDM extension in Chrome extensions list. How can I install it?  How to configure IDM extension for Chrome? Please note that all IDM extensions that can be found in Google Store are fake and should not be used. You need to install IDM extension manually from IDM installation folder. Read in step 2 how to do it . 1. Please update IDM to the latest version by using  "IDM Help->Check for updates..."  menu item 2.  I don't see  "IDM Integration module"  extension in the list of extensions in  Chrome . How can I install it? Press on  Chrome  menu ( arrow 1  on the image), select  "Settings"  menu item ( arrow 2  on the image) and then select  "Extensions"  tab ( arrow 3  on the image). After this open IDM installation folder ( "C:\Program Files (x86)\Internet Download Manager"  by default,  arrow 4  on the image) and drag and drop  "IDMGCExt.crx"  ( arrow 5  on the image) file int

Hidden Wiki

Welcome to The Hidden Wiki New hidden wiki url 2015 http://zqktlwi4fecvo6ri.onion Add it to bookmarks and spread it!!! Editor's picks Bored? Pick a random page from the article index and replace one of these slots with it. The Matrix - Very nice to read. How to Exit the Matrix - Learn how to Protect yourself and your rights, online and off. Verifying PGP signatures - A short and simple how-to guide. In Praise Of Hawala - Anonymous informal value transfer system. Volunteer Here are five different things that you can help us out with. Plunder other hidden service lists for links and place them here! File the SnapBBSIndex links wherever they go. Set external links to HTTPS where available, good certificate, and same content. Care to start recording onionland's history? Check out Onionland's Museum Perform Dead Services Duties. Introduction Points Ahmia.fi - Clearnet search engine for Tor Hidden Services (allows you

Explainer: The nico-teen brain

Explainer: The nico-teen brain The adolescent brain is especially vulnerable to the addictive effects of nicotine BY  TERESA SHIPLEY FELDHAUSEN   7:00AM, AUGUST 19, 2015 Nicotine (black triangle towards center left) tricks the nerve cell (neuron) into sending a message to release more dopamine (yellow dots). Those molecules enter the space (synapse) between one nerve cell and the next. When they get picked up by neighboring cells, this gives users a feel-good high. It also creates the risk of addiction and other health problems.  EMail  Print  Twitter  Facebook  Reddit  Google+ NATIONAL INSTITUTE ON DRUG ABUSE, ADAPTED BY J. HIRSHFELD Nicotine is the addictive chemical in tobacco smoke and e-cigarette vapors. And doctors say the teenage brain is no place for it to end up. Nicotine can reach the brain within seven seconds of puffing on a cigar, hookah, cigarette or electronic cigarette. The area of the brain responsible f