Skip to main content

Black holes and the prospects for measuring gravitational waves

Black holes and the prospects for measuring gravitational waves

Date:
June 15, 2016
Source:
Royal Astronomical Society (RAS)
Summary:
The supermassive black holes found at the centre of every galaxy, including our own Milky Way, may, on average, be smaller than we thought, according to new work. New research suggests that the gravitational waves produced when they merge will be harder to detect than previously assumed.
FULL STORY

An artist's concept of a supermassive black hole at the centre of a galaxy.
Credit: NASA – JPL/Caltech
The supermassive black holes found at the centre of every galaxy, including our own Milky Way, may, on average, be smaller than we thought, according to work led by University of Southampton astronomer Dr Francesco Shankar. If he and his colleagues are right, then the gravitational waves produced when they merge will be harder to detect than previously assumed. The international team of scientists publish their result in Monthly Notices of the Royal Astronomical Society.
Black holes play a fundamental role in astronomy, gravitation, and particle physics. They are enormously concentrated masses, sometimes millions to billions of times more massive than the Sun, and have gravitational fields that are so powerful that not even light travels fast enough to escape their grasp, hence the name ‘black hole’.
Supermassive black holes have been found lurking in the cores of all galaxies observed with high enough sensitivity. Despite this, little is known about how they formed. What is known is that the mass of a supermassive black hole at the centre of a galaxy is related to the total mass and the typical speeds (the "velocity dispersion") of the stars in its host.
The very existence of this relationship suggests a close co-evolution between black holes and their host galaxies, and understanding their origin is vital for a proper model of how galaxies and black holes form and evolve. This is because many galaxy evolution models invoke powerful winds and/or jets from the central supermassive black hole to control or even stop star formation in the host galaxy (so-called "quasar feedback"). Alternatively, multiple mergers of galaxies - and their central black holes - are also often suggested as the primary drivers behind the evolution of massive galaxies.
Despite major theoretical and observational efforts in the last decades, it remains unclear whether quasar feedback actually ever occurred in galaxies, and to what extent mergers have truly shaped galaxies and their black holes. Some of this is because modellers have had a tough time reproducing the observed black-hole galaxy scaling relations, and in reconciling the properties of nearby black holes with more distant populations.
The new work shows that selection effects – where what is observed is not representative - have significantly biased the view of the local black hole population. This bias has led to significantly overestimated black hole masses. It suggests that modellers should look to velocity dispersion rather than stellar mass as the key to unlocking the decades-old puzzles of both quasar feedback and the history of galaxies.
With less mass than previously thought, supermassive black holes have on average weaker gravitational fields. Despite this, they were still able to power quasars, making them bright enough to be observed over distances of billions of light years.
Unfortunately, it also implies a substantial reduction in the expected gravitational wave signal detectable from pulsar timing array experiments. Ripples in spacetime that were first predicted by Albert Einstein in his general theory of relativity in 1915; gravitational waves were finally detected last year and announced by the LIGO team this February. The hope is that coming observatories can observe many more gravitational wave events, and that it will provide astronomers with a new technique for observing the universe.
Dr Shankar comments: “Gravitational wave astronomy is opening up an entirely new way of observing the universe. Our results though illustrate how challenging a complete census of the gravitational background could be, with the signals from the largest black holes being paradoxically among the most difficult to detect with present technology.”
Researchers expect pairs of supermassive black holes, found in merging galaxies, to be the strongest sources of gravitational waves in the universe. However, the more massive the pairs, the lower the frequencies of the emitted waves, which become inaccessible to ground based interferometers like LIGO. Gravitational waves from supermassive black holes can however be detected from space via dedicated gravitational telescopes (such as the present and future ESA missions LISA pathfinder and eLISA), or by a different method using ‘pulsar timing arrays’.
These devices monitor the collapsed, rapidly rotating remnants of massive stars, which have pulsating signals. Even this method is though still a few years from making a detection, according to a follow-up study by the same team expected to appear in another Monthly Notices paper later this year.

Story Source:
The above post is reprinted from materials provided by Royal Astronomical Society (RAS). Note: Materials may be edited for content and length.

Journal Reference:
  1. Francesco Shankar, Mariangela Bernardi, Ravi K. Sheth, Laura Ferrarese, Alister W. Graham, Giulia Savorgnan, Viola Allevato, Alessandro Marconi, Ronald Läsker, Andrea Lapi. Selection bias in dynamically-measured super-massive black holes: its consequences and the quest for the most fundamental relation. Monthly Notices of the Royal Astronomical Society, 2016; stw678 DOI: 10.1093/mnras/stw678

Comments

Popular posts from this blog

sxhkd volume andbrightness config for dwm on void

xbps-install  sxhkd ------------ mkdir .config/sxhkd cd .config/sxhkd nano/vim sxhkdrc -------------------------------- XF86AudioRaiseVolume         amixer -c 1 -- sset Master 2db+ XF86AudioLowerVolume         amixer -c 1 -- sset Master 2db- XF86AudioMute         amixer -c 1 -- sset Master toggle alt + shift + Escape         pkill -USR1 -x sxhkd XF86MonBrightnessUp          xbacklight -inc 20 XF86MonBrightnessDown          xbacklight -dec 20 ------------------------------------------------------------- amixer -c card_no -- sset Interface volume run alsamixer to find card no and interface names xbps-install -S git git clone https://git.suckless.org/dwm xbps-install -S base-devel libX11-devel libXft-devel libXinerama-devel  vim config.mk # FREETYPEINC = ${X11INC}/freetype2 #comment for non-bsd make clean install   cp config.def.h config.h vim config.h xbps-install -S font-symbola #for emoji on statusbar support     void audio config xbps-i

Hidden Wiki

Welcome to The Hidden Wiki New hidden wiki url 2015 http://zqktlwi4fecvo6ri.onion Add it to bookmarks and spread it!!! Editor's picks Bored? Pick a random page from the article index and replace one of these slots with it. The Matrix - Very nice to read. How to Exit the Matrix - Learn how to Protect yourself and your rights, online and off. Verifying PGP signatures - A short and simple how-to guide. In Praise Of Hawala - Anonymous informal value transfer system. Volunteer Here are five different things that you can help us out with. Plunder other hidden service lists for links and place them here! File the SnapBBSIndex links wherever they go. Set external links to HTTPS where available, good certificate, and same content. Care to start recording onionland's history? Check out Onionland's Museum Perform Dead Services Duties. Introduction Points Ahmia.fi - Clearnet search engine for Tor Hidden Services (allows you

download office 2021 and activate

get office from here  https://tb.rg-adguard.net/public.php open powershell as admin (win+x and a ) type cmd  goto insall dir 1.         cd /d %ProgramFiles(x86)%\Microsoft Office\Office16 2.           cd /d %ProgramFiles%\Microsoft Office\Office16 try 1 or 2 depending on installation  install volume license  for /f %x in ('dir /b ..\root\Licenses16\ProPlus2021VL_KMS*.xrm-ms') do cscript ospp.vbs /inslic:"..\root\Licenses16\%x" activate using kms cscript ospp.vbs /setprt:1688 cscript ospp.vbs /unpkey:6F7TH >nul cscript ospp.vbs /inpkey:FXYTK-NJJ8C-GB6DW-3DYQT-6F7TH cscript ospp.vbs /sethst:s8.uk.to cscript ospp.vbs /act Automatic script (windefender may block it) ------------------------------------------------------------------------------------------------------------------- @echo off title Activate Microsoft Office 2021 (ALL versions) for FREE - MSGuides.com&cls&echo =====================================================================================&