Skip to main content

Physicists measured something new in the radioactive decay of neutrons

Physicists measured something new in the radioactive decay of neutrons

The experiment inspired theorists; future ones could reveal new physics

Date:
June 14, 2016
Source:
National Institute of Standards and Technology (NIST)
Summary:
New research has enhanced scientists' understanding of how free neutrons decay into other particles. The work provides the first measurement of the energy spectrum of the photons that are released in the otherwise extensively measured process known as neutron beta decay. The details of this decay process are important because they help to explain the observed amounts of hydrogen and other light atoms created just after the Big Bang.
Share:
FULL STORY

When a free neutron (green) undergoes a process known as beta decay, it produces a proton (red), an antineutrino (gold) and an electron (blue), as well as a photon (white). An experiment at NIST measured the range of energies that a given photon produced by beta decay can possess, a range known as its energy spectrum.
Credit: N. Hanacek / NIST
A physics experiment performed at the National Institute of Standards and Technology (NIST) has enhanced scientists' understanding of how free neutrons decay into other particles. The work provides the first measurement of the energy spectrum of photons, or particles of light, that are released in the otherwise extensively measured process known as neutron beta decay. The details of this decay process are important because, for example, they help to explain the observed amounts of hydrogen and other light atoms created just after the Big Bang.
Published in Physical Review Letters, the findings confirm physicists' big-picture understanding of the way particles and forces work together in the universe--an understanding known as the Standard Model. The work has stimulated new theoretical activity in quantum electrodynamics (QED), the modern theory of how matter interacts with light. The team's approach could also help search for new physics that lies beyond the Standard Model.
Neutrons are well known as one of the three kinds of particles that form atoms. Present in all atoms except the most common form of hydrogen, neutrons together with protons form the atomic nucleus. However, "free" neutrons not bound within a nucleus decay in about 15 minutes on average. Most frequently, a neutron transforms through the beta decay process into a proton, an electron, a photon, and the antimatter version of the neutrino, an abundant but elusive particle that rarely interacts with matter.
The photons from beta decay are what the research team wanted to explore. These photons have a range of possible energies predicted by QED, which has worked very well as a theory for decades. But no one had actually checked this aspect of QED with high precision.
"We weren't expecting to see anything unusual," said NIST physicist Jeff Nico, "but we wanted to test QED's predictions very precisely in a way no one has done before."
Nico and his colleagues, who represent nine research institutions, performed their measurements at the NIST Center for Neutron Research (NCNR). It produces an intense beam of slow-moving neutrons whose photon emissions can be detected with the same setup used for earlier precision measurements of the neutron's lifetime.
The team measured two aspects of neutron decay: the energy spectrum of the photons, and also its branching ratio, which can provide information on how frequently the decays were accompanied by photons above a specific energy. The results of this effort gave them a branching ratio measurement more than twice as accurate as the previous value, and the first measurement of the energy spectrum.
"Everything we found was consistent with the predominant QED calculations," Nico said. "We got quite a good match with theory on the energy spectrum, and we reduced the uncertainty in the branching ratio."
According to Nico, the results provided specific information that theoretical physicists are already using to further develop QED to provide more detailed descriptions of neutron beta decay.
The results serve as a needed check on the Standard Model, said Nico, and validates the team's experimental approach as a way to go beyond it. With better detectors, the approach could be used to search for so-called "right-handed" neutrinos, which have not yet been detected in nature, and potential time-reversal symmetry violations, which could explain why there is much more matter than antimatter in the universe.

Story Source:
The above post is reprinted from materials provided by National Institute of Standards and Technology (NIST). Note: Materials may be edited for content and length.

Journal Reference:
  1. M. J. Bales, R. Alarcon, C. D. Bass, E. J. Beise, H. Breuer, J. Byrne, T. E. Chupp, K. J. Coakley, R. L. Cooper, M. S. Dewey, S. Gardner, T. R. Gentile, D. He, H. P. Mumm, J. S. Nico, B. O’Neill, A. K. Thompson, F. E. Wietfeldt. Precision Measurement of the Radiative╬▓Decay of the Free Neutron. Physical Review Letters, 2016; 116 (24) DOI: 10.1103/PhysRevLett.116.242501


Comments

Popular posts from this blog

fix idm integration on chrome

Chrome Browser Integration I do not see IDM extension in Chrome extensions list. How can I install it?  How to configure IDM extension for Chrome? Please note that all IDM extensions that can be found in Google Store are fake and should not be used. You need to install IDM extension manually from IDM installation folder. Read in step 2 how to do it . 1. Please update IDM to the latest version by using  "IDM Help->Check for updates..."  menu item 2.  I don't see  "IDM Integration module"  extension in the list of extensions in  Chrome . How can I install it? Press on  Chrome  menu ( arrow 1  on the image), select  "Settings"  menu item ( arrow 2  on the image) and then select  "Extensions"  tab ( arrow 3  on the image). After this open IDM installation folder ( "C:\Program Files (x86)\Internet Download Manager"  by default,  arrow 4  on the image) and drag and drop  "IDMGCExt.crx"  ( arrow 5  on the image) file int

sxhkd volume andbrightness config for dwm on void

xbps-install  sxhkd ------------ mkdir .config/sxhkd cd .config/sxhkd nano/vim sxhkdrc -------------------------------- XF86AudioRaiseVolume         amixer -c 1 -- sset Master 2db+ XF86AudioLowerVolume         amixer -c 1 -- sset Master 2db- XF86AudioMute         amixer -c 1 -- sset Master toggle alt + shift + Escape         pkill -USR1 -x sxhkd XF86MonBrightnessUp          xbacklight -inc 20 XF86MonBrightnessDown          xbacklight -dec 20 ------------------------------------------------------------- amixer -c card_no -- sset Interface volume run alsamixer to find card no and interface names xbps-install -S git git clone https://git.suckless.org/dwm xbps-install -S base-devel libX11-devel libXft-devel libXinerama-devel  vim config.mk # FREETYPEINC = ${X11INC}/freetype2 #comment for non-bsd make clean install   cp config.def.h config.h vim config.h xbps-install -S font-symbola #for emoji on statusbar support     void audio config xbps-i

Hidden Wiki

Welcome to The Hidden Wiki New hidden wiki url 2015 http://zqktlwi4fecvo6ri.onion Add it to bookmarks and spread it!!! Editor's picks Bored? Pick a random page from the article index and replace one of these slots with it. The Matrix - Very nice to read. How to Exit the Matrix - Learn how to Protect yourself and your rights, online and off. Verifying PGP signatures - A short and simple how-to guide. In Praise Of Hawala - Anonymous informal value transfer system. Volunteer Here are five different things that you can help us out with. Plunder other hidden service lists for links and place them here! File the SnapBBSIndex links wherever they go. Set external links to HTTPS where available, good certificate, and same content. Care to start recording onionland's history? Check out Onionland's Museum Perform Dead Services Duties. Introduction Points Ahmia.fi - Clearnet search engine for Tor Hidden Services (allows you