Skip to main content

Exotic states materialize with supercomputers

Exotic states materialize with supercomputers

Jorge Salazar, TACC
This picture tells quite a story to scientists. It's a portrait of what they call a topological insulator, materials that conduct only at their edges. Technically it shows the edge density of states calculated for a monolayer transition metal dichalcogenide in the 1T'-MoS2 structural phase. There's a black gap between the purple blobs at the bottom and top. What's more, there's crisscrossing reddish lines that bridge the gap. The lines indicate the edge state of the material, allowing electrons to cross the gap and conduct electricity. Image: Qian et. al.
This picture tells quite a story to scientists. It's a portrait of what they call a topological insulator, materials that conduct only at their edges. Technically it shows the edge density of states calculated for a monolayer transition metal dichalcogenide in the 1T'-MoS2 structural phase. There's a black gap between the purple blobs at the bottom and top. What's more, there's crisscrossing reddish lines that bridge the gap. The lines indicate the edge state of the material, allowing electrons to cross the gap and conduct electricity. Image: Qian et. al.
Scientists used supercomputers to find a new class of materials that possess an exotic state of matter known as the quantum spin Hall effect. The researchers published their results in Science in December 2014, where they propose a new type of transistor made from these materials. The science team included Ju Li, Liang Fu, Xiaofeng Qian and Junwei Liu, experts in topological phases of matter and 2-D materials research at the Massachusetts Institute of Technology (MIT). They calculated the electronic structures of the materials using the Stampede and Lonestar supercomputers of the Texas Advanced Computing Center.
The computational allocation was made through XSEDE, the Extreme Science and Engineering Discovery Environment, a single virtual system funded by the National Science Foundation (NSF) that scientists use to interactively share computing resources, data and expertise. The study was funded by the U.S. Dept. of Energy and the NSF.
"To me, national computing resources like XSEDE, or specifically the Stampede and Lonestar supercomputers, are extremely helpful to computational scientists," Xiaofeng Qian said. In January 2015, Qian left MIT to join Texas A&M Univ. as the first tenure-track assistant professor at its newly formed Dept. of Materials Science and Engineering.
What Qian and colleagues did was purely theoretical work, using Stampede for part of the calculations that modeled the interactions of atoms in the novel materials, two-dimensional transition metal dichalcogenides (TMDC). Qian used the molecular dynamics simulation software Vienna Ab initio Simulation Package to model a unit cell of atoms, the basic building block of the crystal lattice of TMDC.
"If you look at the unit cell, it's not large. They are just a few atoms. However, the problem is that we need to predict the band structure of charge carriers in their excited states in the presence of spin coupling as accurately as possible," Qian said.
Scientists diagram the electronic band structure of materials to show the energy ranges an electron is allowed, with the band gap showing forbidden zones that basically block the flow of current. Spin coupling accounts for the electromagnetic interactions between electron's spin and magnetic field generated from the electron's motion around the nucleus.
The complexity lies in the details of these interactions, for which Qian applied many-body perturbation theory with the GW approximation, a state-of-the-art first principles method, to calculate the quasiparticle electronic structures for electrons and holes. The 'G' is short for Green's Function and 'W' for screened Coulomb interaction, Qian explained.
This diagram illustrates the concept behind the MIT team's vision of a new kind of electronic device based on 2-D materials. The 2-D material is at the middle of a layered "sandwich," with layers of another material, boron nitride, at top and bottom (shown in gray). When an electric field is applied to the material, by way of the rectangular areas at top, it switches the quantum state of the middle layer (yellow areas). The boundaries of these "switched" regions act as perfect quantum wires, potentially leading to new electronic devices with low losses. "In order to carry out these calculations to obtain reasonable convergence in the results, we have to use 96 cores, sometimes even more," Qian said. "And then we need them for 24 hrs. The Stampede computer is very efficient and powerful. The work that we have been showing is not just one material; we have several other materials as well as different conditions. In this sense, access to the resources, especially Stampede, is very helpful to our project."
The big picture for Qian and his colleagues is the hunt for new kinds of materials with extraordinarily useful properties. Their target is room-temperature quantum spin Hall insulators, which are basically near-two-dimensional materials that block current flow everywhere except along their edges. "Along the edges you have the so-called spin up electron flow in one direction, and at the same time you have spin down electrons and flows away in the opposite direction," Qian explained. "Basically, you can imagine, by controlling the injection of charge carriers, one can come up with spintronics, or electronics."
The scientists in this work proposed a topological field-effect transistor, made of sheets of hexagonal boron interlaced with sheets of TMDC. "We found a very convenient method to control the topological phase transition in these quantum spin Hall interlayers," Qian said. "This is very important because once we have this capability to control the phase transition, we can design some electronic devices that can be controlled easily through electrical fields."
Qian stressed that this work lays the theoretical ground for future real experiments in the lab. He hopes it might develop into an actual transistor suitable for a quantum computer, basically an as-yet-unrealized machine that manipulates data beyond just the binary of ones and zeros.
"So far, we haven't looked into the detailed applications for quantum computing yet," Qian said. "However, it is possible to combine these materials with superconductors and come up with the so-called Majorana fermion zero mode for quantum computing."
Source: Univ. of Texas, Austin

Popular posts from this blog

camtasia 9 key

1.abul hossain Key : BBCUV-UVDRC-M8C5S-CHMX7-2M3A5 2.YR-Invasion Key=BBCUVUVDRCM8C5SCHMX72M3A5

Hidden Wiki

Welcome to The Hidden WikiNew hidden wiki url 2015 http://zqktlwi4fecvo6ri.onion Add it to bookmarks and spread it!!!
Editor's picks Bored? Pick a random page from the article index and replace one of these slots with it.
The Matrix - Very nice to read. How to Exit the Matrix - Learn how to Protect yourself and your rights, online and off. Verifying PGP signatures - A short and simple how-to guide. In Praise Of Hawala - Anonymous informal value transfer system. Volunteer Here are five different things that you can help us out with.
Plunder other hidden service lists for links and place them here! File the SnapBBSIndex links wherever they go. Set external links to HTTPS where available, good certificate, and same content. Care to start recording onionland's history? Check out Onionland's Museum Perform Dead Services Duties. Introduction PointsAhmia.fi - Clearnet search engine for Tor Hidden Services (allows you to add new sites to its database). DuckDuckGo - A Hidden S…

[SOLVED] IDM WAS REGISTERED WITH A FAKE SERIAL NUMBER

[SOLVED] IDM WAS REGISTERED WITH A FAKE SERIAL NUMBER
Good News [May 08, 2015]: IDM developers got smarter, but the crackers are always a step ahead. Follow this article and send an email to [email protected] if you are desperate. I can NOT post any crack here for legal reasons. Happy Downloading with IDM. ;) *********** first tip is to use latest crack for idm from  onhax.net idm universal web crack and make sure u are using all latest vers I am sure many of us are too much dependent on Internet Download Manager a.k.a. IDM. The main reason didn’t permanently switch to linux was IDM. I mainly use it for batch downloading and download streaming videos. Till yesterday, IDM was working fine with me (of course with fake serial numbers, keygen, crack, patch etc. which could be found with little effort). But few days ago, with the latest update version 6.18 build 7 (released on Nov 09, 2013) Internet Download Manager was literally had a breakthrough and crushed all the serial numbers, …