Skip to main content

Newly Formed Neurons Help Brain “Catalog Memories In Time”

Newly Formed Neurons Help Brain “Catalog Memories In Time”

March 11, 2016 | by Ben Taub
photo credit: The human brain generates 1,400 new neurons per day, but their function had until now remained unknown

Sometimes it can feel every day is Groundhog Day: you wake up, go to work, see the same people as the day before, and come home again. And yet, you experience each day as a completely new event, fully aware that you are living it for the first time. Exactly how the brain distinguishes between apparently similar contexts without mixing them up has perplexed scientists for some time, but new evidence suggests that “newborn” brain cells may hold the answer.
The vast majority of brain cells – or neurons – are formed before birth and do not divide or regenerate at any point during a person’s lifetime. However, a small subpopulation of cells located in a tiny brain region called the dentate gyrus are able to do so, producing new cells via a process known as neurogenesis. Yet while the human brain produces around 1,400 of these so-called adult born granule cells (abGCs) per day, the function of these young neurons had until now remained completely unknown.
To investigate this, researchers from Columbia University and the Zuckerman Institute used 2-photon calcium imaging to monitor and compare the activity of newly-formed and mature neurons in the dentate gyrus of mice as they encountered certain stimuli. The study, published in the journal Neuron, is the first to monitor abGCs in live animals.
During the experiment, mice were placed on treadmills that were lined with a range of multisensory cues, such as textured materials, lights and smells. Results showed that abGCs less than six weeks old were significantly more active than mature neurons as the mice encountered these stimuli, suggesting that they may be have been actively encoding memories of the sensory experience.
In contrast, mature neurons appeared to be less sensitive to these multisensory inputs, instead becoming stimulated only by major changes in spatial arrangements.
Speaking to IFLScience, study coauthor Mazen Kheirbek explained that “unlike the mature neurons, the younger neurons seem to be very sensitive to the changes in the stimuli around them, so we think that they are much better at taking in novel information.”
Even when every day feels the same, we know it is not.
To test this hypothesis, the researchers genetically engineered mice to carry light-sensitive genes that can control the firing of abGCs – a method known as optogenetics. These mice were repeatedly placed in a chamber and given an electric shock to the foot, until they learned to associate the environment with the shock, causing them to automatically freeze in fear every time they entered the room.
Using flashing lights to inhibit their abGCs, researchers then placed the mice in a similar but slightly different room, in which they did not receive a shock. While “normal” mice were able to tell the two chambers apart and therefore only exhibited the conditioned fear response in the shock room, those with silenced abGCs displayed this freezing reaction in both rooms, suggesting an inability to distinguish between the two settings.
As such, the study authors conclude that the sensitivity of newborn neurons to multisensory cues enables the brain to distinguish between highly similar yet novel contexts – a phenomenon known as pattern separation.
This research could lead to the development of new treatments for mental disorders such as post-traumatic stress disorder, which occurs due to “a deficit in the ability to catalog memories in time or distinguish a new experience from a previous traumatic experience.”
Accordingly, Kheirbek says researchers’ “long-term goal is to stimulate the activity of these young neurons so that we can treat different cognitive disorders, especially those involving deficits in the ability to distinguish between something new versus something in the past.”

Popular posts from this blog

camtasia 9 key

1.abul hossain Key : BBCUV-UVDRC-M8C5S-CHMX7-2M3A5 2.YR-Invasion Key=BBCUVUVDRCM8C5SCHMX72M3A5

Hidden Wiki

Welcome to The Hidden WikiNew hidden wiki url 2015 http://zqktlwi4fecvo6ri.onion Add it to bookmarks and spread it!!!
Editor's picks Bored? Pick a random page from the article index and replace one of these slots with it.
The Matrix - Very nice to read. How to Exit the Matrix - Learn how to Protect yourself and your rights, online and off. Verifying PGP signatures - A short and simple how-to guide. In Praise Of Hawala - Anonymous informal value transfer system. Volunteer Here are five different things that you can help us out with.
Plunder other hidden service lists for links and place them here! File the SnapBBSIndex links wherever they go. Set external links to HTTPS where available, good certificate, and same content. Care to start recording onionland's history? Check out Onionland's Museum Perform Dead Services Duties. Introduction - Clearnet search engine for Tor Hidden Services (allows you to add new sites to its database). DuckDuckGo - A Hidden S…


Good News [May 08, 2015]: IDM developers got smarter, but the crackers are always a step ahead. Follow this article and send an email to [email protected] if you are desperate. I can NOT post any crack here for legal reasons. Happy Downloading with IDM. ;) *********** first tip is to use latest crack for idm from idm universal web crack and make sure u are using all latest vers I am sure many of us are too much dependent on Internet Download Manager a.k.a. IDM. The main reason didn’t permanently switch to linux was IDM. I mainly use it for batch downloading and download streaming videos. Till yesterday, IDM was working fine with me (of course with fake serial numbers, keygen, crack, patch etc. which could be found with little effort). But few days ago, with the latest update version 6.18 build 7 (released on Nov 09, 2013) Internet Download Manager was literally had a breakthrough and crushed all the serial numbers, …