Posts

Showing posts from March, 2017
go to appwiz.cpl/turn win features on/off turn on telnet  cmd: Telnet Towel.blinkenlights.nl  http://www.telnet.org/htm/places.htm rainmaker.wunderground.com  :: weather via telnet! india.colorado.edu 13 (Get the time)  :: get the time telnet.wmflabs.org  :: telnet gateway to wikimedia content ( more info ) telehack.com 23  :: Telehack telehack.com  :: Telehack - web freechess.org 5000  :: freechess.org towel.blinkenlights.nl 23  :: Star Wars asciimation towel.blinkenlights.nl 666  :: The Bofh Excuse Server mtrek.com:1701  :: mtrek (star trek themed game) xmltrek.com:1701  :: xmltrek (star trek themed game)
Where to find Lockscreen Spotlight images in Windows 10? Windows Spotlight is a fancy feature which exists in Windows 10 November Update 1511. It downloads beautiful images from the Internet and shows them on your lock screen! So, every time you boot or lock Windows 10, you will see a new lovely image. However, Microsoft made the downloaded images hidden from the end user. Here is how you can find those images and use them as your wallpaper or somewhere else. To get access to image files downloaded by the Windows Spotlight feature, follow the instructions below. Press  Win  +  R  shortcut keys together on the keyboard to open the Run dialog. Tip: See the  complete list of  Win  key shortcuts  available in Windows. Enter the following in the Run box: %localappdata%\Packages\Microsoft.Windows.ContentDeliveryManager_cw5n1h2txyewy\LocalState\Assets Press  Enter A folder will be opened in File Explorer. Copy all the files you see to any folder you want. This PC\Pictures is
Suppose you want cos(nx) and sin(nx) in terms of sin(x).  You'll need cos(x) as well which can be found using  c o s ( x ) = ± 1 − ( s i n ( x ) ) 2 − − − − − − − − − − − √ c o s ( x ) = ± 1 − ( s i n ( x ) ) 2 First note that  e i x = c o s ( x ) + i ∗ s i n ( x ) e i x = c o s ( x ) + i ∗ s i n ( x ) Raising both sides to the nth power: e n ∗ i x = ( c o s ( x ) + i ∗ s i n ( x ) ) n e n ∗ i x = ( c o s ( x ) + i ∗ s i n ( x ) ) n And note that  e n ∗ i x = c o s ( n x ) + i ∗ s i n ( n x ) e n ∗ i x = c o s ( n x ) + i ∗ s i n ( n x ) Therefore, by the transitive property ( cos ( x ) + i ∗ sin ( x ) ) n = cos ( n x ) + i ∗ sin ( n x ) ( cos ⁡ ( x ) + i ∗ sin ⁡ ( x ) ) n = cos ⁡ ( n x ) + i ∗ sin ⁡ ( n x ) So  c o s ( n x ) = R e ( c o s ( x ) + i ∗ s i n ( x ) ) n ) c o s ( n x ) = R e ( c o s ( x ) + i ∗ s i n ( x ) ) n ) and  s i n ( n x ) = I m ( c o s ( x ) + i ∗ s i n ( x ) ) n ) s i n ( n x ) = I m ( c o s ( x ) + i ∗ s i n ( x ) ) n ) Expanding using the binomial theorem