Skip to main content

place value intl and hindu arabic

 

[https://simple.wikipedia.org/wiki/Names_of_large_numbers]

[http://www.lekno.ws/A/bignumb.html]

Scientific Notation American Name (Short Form) Old European Name (Long Form) Old British Name SI Symbol Metric Prefix
1 One One One

10 Ten Ten Ten da Deca-
100 Hundred Hundred Hundred c Cent-
1,000 Thousand Thousand Thousand k Kilo-
10,000 Ten thousand Ten thousand Ten thousand

100,000 Hundred thousand Hundred thousand Hundred thousand

1,000,000 Million Million Million M Mega-
10^9 Billion Milliard Thousand million G Giga-
10^12 Trillion Billion Billion T Tera-
10^15 Quadrillion Billiard Thousand billion P Peta-
10^18 Quintillion Trillion Trillion E Exa-
10^21 Sextillion Trilliard Thousand trillion Z Zetta-
10^24 Septillion Quadrillion Quadrillion Y Yotta-
10^27 Octillion Quadrilliard Thousand quadrillion R Ronna-
10^30 Nonillion Quintillion Quintillion Q Quetta-
10^33 Decillion Quintilliard Thousand quintillion

10^36 Undecillion Sextillion Sextillion

10^39 Duodecillion Sextilliard Thousand sextillion

10^42 Tredecillion Septillion Septillion

10^45 Quattuordecillion Septilliard Thousand septillion

10^48 Quindecillion Octillion Octillion

10^51 Sexdecillion Octilliard Thousand octillion

10^54 Septendecillion Nonillion Nonillion

10^57 Octodecillion Nonilliard Thousand nonillion

10^60 Novemdecillion Decillion Decillion

10^63 Vigintillion Decilliard Thousand decillion

10^66 Unvigintillion Undecillion Unvigintillion

10^69 Duovigintillion Undecilliard Thousand undecillion

10^72 Trevigintillion Duodecillion Duodecillion

10^75 Quattuorvigintillion Duodecilliard Thousand duodecillion

10^78 Quinvigintillion Tredecillion Tredecillion

10^81 Sexvigintillion Tredecilliard Thousand tredecillion

10^84 Septenvigintillion Quattuordecillion Quattuordecillion

10^87 Octovigintillion Quattuordecilliard Thousand quattuordecillion

10^90 Novemvigintillion Quindecillion Quindecillion

10^93 Trigintillion Quindecilliard Thousand quindecillion

10^96 Untrigintillion Sexdecillion Sexdecillion

10^99 Duotrigintillion Sexdecilliard Thousand sexdecillion

10^100 Googol Googol Googol

10^102 Tretrigintillion Septendecillion Septendecillion

10^105 Quattuortrigintillion Septendecilliard Thousand septendecillion

10^108 Quintrigintillion Octillion Octillion

10^111 Sextrigintillion Octodecilliard Thousand octodecillion

10^114 Septentrigintillion Novemdecillion Novemdecillion

10^117 Octotrigintillion Novemdecilliard Thousand novemdecillion

10^120 Novemtrigintillion Vigintillion Vigintillion

10^123 Quadragintillion Vigintilliard Thousand vigintillion

10^126 Unquadragintillion Unvigintillion Unvigintillion

10^153 Quinquagintillion Quinvigintilliard


10^183 Sexagintillion Trigintilliard


10^213 Septuagintillion Quintrigintilliard


10^243 Octogintillion Quadragintilliard


10^273 Nonagintillion Quinquadragintilliard


10^303 Centillion Quinquagintilliard


10^306 Cenuntillion Quinquagintilliard Unquinquagintillion

10^603 Ducentillion



10^903 Trecentillion



10^1203 Quadringentillion



10^1503 Quingentillion



10^1803 Sescentillion



10^2103 Septingentillion



10^2403 Octingentillion



10^2703 Nongentillion



10^3003 Millinillion



10^10100 Googolplex



10^101034 Skewes' Number



10^googolplex Googolplexplex



other

Large Numbers in Fast-Growing Notation

Number Name Expression
Moser's Number F^64(9)
Graham's Number g_64 or approximated as F^{g_63}(3)
Tree(3) F^{F^{F^{...}}}(3)
Rayo's Number F^{F^{F^{...}}}(R)
Busy Beaver BB(n)
Feigenbaum Constant δ ≈ 4.669201609102990...
Chaitin's Omega A real number, representing the halting probability of a Turing machine.

Fast-Growing Notations:

F notation: Fn(a)Fn(a) indicates an iterated exponential function, where F1(a)=aaF1(a)=aa, F2(a)=aaaF2(a)=aaa, and so on, with each step building an exponential tower.

For example:

F2(9)=999F2(9)=999
F3(9)=9999F3(9)=9999, and so on.

[https://www.hellenicaworld.com/Science/Mathematics/en/HistoryLargenumbers.html] old hindu/buddhist

Name Value
lakṣá (लक्ष) 10^5
kōṭi (कोटि) 10^7
ayuta (अयुत) 10^9
niyuta (नियुत) 10^13
pakoti (पकोटि) 10^14
vivara (विवारा) 10^15
kshobhya (क्षोभ्या) 10^17
vivaha (विवाहा) 10^19
kotippakoti (कोटिपकोटी) 10^21
bahula (बहुल) 10^23
nagabala (नागाबाला) 10^25
nahuta (नाहूटा) 10^28
titlambha (तीतलम्भा) 10^29
vyavasthanapajnapati (व्यवस्थानापज्नापति) 10^31
hetuhila (हेतुहीला) 10^33
ninnahuta (निन्नाहुता) 10^35
hetvindriya (हेत्विन्द्रिय) 10^37
samaptalambha (समाप्तलम्भ) 10^39
gananagati (गनानागती) 10^41
akkhobini (अक्खोबिनि) 10^42
niravadya (निरावाद्य) 10^43
mudrabala (मुद्राबाला) 10^45
sarvabala (सर्वबाला) 10^47
bindu (बिंदु or बिन्दु) 10^49
sarvajna (सर्वज्ञ) 10^51
vibhutangama (विभुतन्गमा) 10^53
abbuda (अब्बुद) 10^56
nirabbuda (निर्बुद्ध) 10^63
ahaha (अहाहा) 10^70
ababa (अबाबा) 10^77
atata (अटाटा) 10^84
soganghika (सोगान्घीक) 10^91
uppala (उप्पल) 10^98
kumuda (कुमुद) 10^105
pundarika (पुन्डरीक) 10^112
paduma (पद्म) 10^119
kathana (कथन) 10^126
mahakathana (महाकथन) 10^133
asaṃkhyeya (असंख्येय) 10^140
dhvajagranishamani (ध्वजाग्रनिशमनी) 10^421
bodhisattva (बोधिसत्व) 10^37218383881977644441306597687849648128
lalitavistarautra (ललितातुलनातारासूत्र) 10^200 infinities
matsya (मत्स्य) 10^600 infinities
kurma (कूर्म) 10^2000 infinities
varaha (वराह) 10^3600 infinities
narasimha (नरसिम्हा) 10^4800 infinities
vamana (वामन) 10^5800 infinities
parashurama (परशुराम) 10^6000 infinities
rama (राम) 10^6800 infinities
khrishnaraja (खृष्णराज) 10^infinities
kalki (कल्कि) 10^8000 infinities
balarama (बलराम) 10^9800 infinities
dasavatara (दशावतार) 10^10000 infinities
bhagavatapurana (भागवतपुराण) 10^18000 infinities
avatamsakasutra (अवतांशकासूत्र) 10^30000 infinities
mahadeva (महादेव) 10^50000 infinities
prajapati (प्रजापति) 10^60000 infinities
jyotiba (ज्योतिबा) 10^80000 infinities
parvati (पार्वती) 10^2000000000000 infinities
paro (पॅरो) 10^40000000000000000000 infinities

Comments

Popular posts from this blog

xdm linux merge incomplete download parts

 some download stuck at 99.99% , merge them regardless got to ~/.xdm-app-data/Data/*.state cat dec.py import os import re # Define the pattern to extract the segment number pattern = re.compile(r'seg-(\d+)-v1-a1\.ts') # Get the current working directory current_directory = os.getcwd() # List to hold tuples of (segment_number, filename) files_with_segments = [] # Iterate through files in the current directory for filename in os.listdir(current_directory): match = pattern.search(filename) if match: # Extract the segment number as an integer segment_number = int(match.group(1)) # Add the tuple (segment_number, filename) to the list files_with_segments.append((segment_number, filename)) # Sort the list by the segment number (numerical sort) files_with_segments.sort(key=lambda x: x[0]) # Open the filelist.txt for writing with open('filelist.txt', 'w') as filelist: for _, filename in files_with_segments: file...

kde on debian

https://wiki.debian.org/KDE sudo apt install   xserver-xorg-input-libinput xserver-xorg-video-intel  sudo apt install plasma-desktop plasma-workspace-wayland  sddm  issue  file:///usr/share/plasma/plasmoids/org.kde.plasma.kickoff/contents/ui/Kickoff.qml:157:34: Type FullRepresentat ion unavailable file:///usr/share/plasma/plasmoids/org.kde.plasma.kickoff/contents/ui/FullRepresentation.qml:80:22: Type Norma lPage unavailable file:///usr/share/plasma/plasmoids/org.kde.plasma.kickoff/contents/ui/NormalPage.qml:43:13: Type Footer unavai lable file:///usr/share/plasma/plasmoids/org.kde.plasma.kickoff/contents/ui/Footer.qml:155:5: Type LeaveButtons unav ailable file:///usr/share/plasma/plasmoids/org.kde.plasma.kickoff/contents/ui/LeaveButtons.qml:14:1: module "org.kde.k itemmodels" is not installed # upower , it is installed by powerdevil though sudo apt install kde-config-gtk-style  kde-config-gtk-style-preview   breeze-gtk-theme  sudo apt i...

rsa encryption

 choose two large  prime number p (prime 1) and q (prime 2)   n = p x q , where n is called the modulus for encryption and decryption   φ = ( p - 1) x ( q -1) is called Euler's totient function for n= pq For a given positive integer n, Euler's totient function ϕ(n) is defined as the number of positive integers less than or equal to n that are coprime (i.e., share no common factors) with n. ϕ( n ) = n ∏ p ∣ n ( 1 − 1 p )     \phi(n) = n \prod_{p \mid n} \left(1 - \frac{1}{p}\right)   p ∣ n means that p p divides n , and is a prime factor greater than 1  i  n    example , n=2*3=6 with factors f=1 , 2 , 3 , 4 , 5,6 factors Two numbers are coprime if their greatest common divisor (GCD) is 1 here find gcd(f,n)=1  only 1 and 5 are coprime with 6  φ =1*2 =2   choose e less  than φ , such that  e is co prime with φ , ie  e has no common factor with φ except 1 mathematically : gcd ( e , φ ...