Skip to main content

Posts

Showing posts from January, 2025

kde on debian

https://wiki.debian.org/KDE sudo apt install   xserver-xorg-input-libinput xserver-xorg-video-intel  sudo apt install plasma-desktop plasma-workspace-wayland  sddm  issue  file:///usr/share/plasma/plasmoids/org.kde.plasma.kickoff/contents/ui/Kickoff.qml:157:34: Type FullRepresentat ion unavailable file:///usr/share/plasma/plasmoids/org.kde.plasma.kickoff/contents/ui/FullRepresentation.qml:80:22: Type Norma lPage unavailable file:///usr/share/plasma/plasmoids/org.kde.plasma.kickoff/contents/ui/NormalPage.qml:43:13: Type Footer unavai lable file:///usr/share/plasma/plasmoids/org.kde.plasma.kickoff/contents/ui/Footer.qml:155:5: Type LeaveButtons unav ailable file:///usr/share/plasma/plasmoids/org.kde.plasma.kickoff/contents/ui/LeaveButtons.qml:14:1: module "org.kde.k itemmodels" is not installed # upower , it is installed by powerdevil though sudo apt install kde-config-gtk-style  kde-config-gtk-style-preview   breeze-gtk-theme  sudo apt i...

chimer linux install

  https://repo.chimera-linux.org/ https://chimera-linux.org/docs/installation   https://repo.chimera-linux.org/live/latest/   https://repo.chimera-linux.org/live/latest/chimera-linux-x86_64-ROOTFS-20241204-full.tar.gz https://repo.chimera-linux.org/live/latest/chimera-linux-x86_64-ROOTFS-20241204-bootstrap.tar.gz   sudo mkfs.ext4 /dev/sda4   wget https://repo.chimera-linux.org/live/latest/chimera-linux-x86_64-ROOTFS-20241204-bootstrap.tar.gz sudo tar xvpf chimera-linux-x86_64-ROOTFS-20241204-bootstrap.tar.gz -C /mnt/    echo "nameserver 1.1.1.1" > /etc/resolv.conf apk update fetch https://repo.chimera-linux.org/current/main/x86_64/APKINDEX.tar.gz [https://repo.chimera-linux.org/current/main] OK: 9900 distinct packages available   cat /etc/apk/world base-bootstrap apk list base-*   list of bases base-bootstrap already installed  apk info -R base-bootstrap base-bootstrap-0.1-r1 depends on: apk-tools chimera-repo-main chimerautil...

rsa encryption

 choose two large  prime number p (prime 1) and q (prime 2)   n = p x q , where n is called the modulus for encryption and decryption   φ = ( p - 1) x ( q -1) is called Euler's totient function for n= pq For a given positive integer n, Euler's totient function ϕ(n) is defined as the number of positive integers less than or equal to n that are coprime (i.e., share no common factors) with n. ϕ( n ) = n ∏ p ∣ n ( 1 − 1 p )     \phi(n) = n \prod_{p \mid n} \left(1 - \frac{1}{p}\right)   p ∣ n means that p p divides n , and is a prime factor greater than 1  i  n    example , n=2*3=6 with factors f=1 , 2 , 3 , 4 , 5,6 factors Two numbers are coprime if their greatest common divisor (GCD) is 1 here find gcd(f,n)=1  only 1 and 5 are coprime with 6  φ =1*2 =2   choose e less  than φ , such that  e is co prime with φ , ie  e has no common factor with φ except 1 mathematically : gcd ( e , φ ...