Skip to main content

Did gravitational wave detector find dark matter?

Did gravitational wave detector find dark matter?

Johns Hopkins scientists offer hypothesis to solve longstanding mystery in physics

Date:
June 15, 2016
Source:
Johns Hopkins University
Summary:
When an astronomical observatory detected two black holes colliding in deep space, scientists celebrated confirmation of Einstein's prediction of gravitational waves. A team of astrophysicists wondered something else: Had the experiment found the "dark matter" that makes up most of the mass of the universe?
FULL STORY

This image depicts two black holes just moments before they collided and merged with each other, releasing energy in the form of gravitational waves. On Dec. 26, 2015, after traveling for 1.4 billion years, the waves reached Earth and set off the twin LIGO detectors. This marks the second time that LIGO has detected gravitational waves, providing further confirmation of Einstein's general theory of relativity and securing the future of gravitational wave astronomy as a fundamentally new way to observe the universe. The black holes were 14 and 8 times the mass of the sun (L-R), and merged to form a new black hole 21 times the mass of the sun. An additional sun's worth of mass was transformed and released in the form of gravitational energy.
Credit: Numerical Simulations: S. Ossokine and A. Buonanno, Max Planck Institute for Gravitational Physics, and the Simulating eXtreme Spacetime (SXS) project. Scientific Visualization: T. Dietrich and R. Haas, Max Planck Institute for Gravitational Physics.
The eight scientists from the Johns Hopkins Henry A. Rowland Department of Physics and Astronomy had already started making calculations when the discovery by the Laser Interferometer Gravitational-Wave Observatory (LIGO) was announced in February. Their results, published recently in Physical Review Letters, unfold as a hypothesis suggesting a solution for an abiding mystery in astrophysics.
"We consider the possibility that the black hole binary detected by LIGO may be a signature of dark matter," wrote the scientists in their summary, referring to the black hole pair as a "binary." What follows are five pages of annotated mathematical equations showing how the researchers considered the mass of the two objects LIGO detected as a point of departure, suggesting that these objects could be part of the mysterious substance known to make up about 85 percent of the mass of the universe.
A matter of scientific speculation since the 1930s, dark matter has recently been studied with greater precision; more evidence has emerged since the 1970s, albeit always indirectly. While dark matter itself cannot yet be detected, its gravitational effects can be. For example, the influence of nearby dark matter is believed to explain inconsistencies in the rotation of visible matter in galaxies.
The Johns Hopkins team, led by postdoctoral fellow Simeon Bird, was struck by the mass of the black holes detected by LIGO, an observatory that consists of two expansive L-shaped detection systems anchored to the ground. One is in Louisiana and the other in Washington State.
Black hole masses are measured in terms of multiples of our sun. The colliding objects that generated the gravity wave detected by LIGO -- a joint project of the California Institute of Technology and the Massachusetts Institute of Technology -- were 36 and 29 solar masses. Those are too large to fit predictions of the size of most stellar black holes, the ultra-dense structures that form when stars collapse. But they are also too small to fit predictions for the size of supermassive black holes at the center of galaxies.
The two LIGO-detected objects do, however, fit within the expected range of mass of "primordial" black holes.
Primordial black holes are believed to have formed not from stars but from the collapse of large expanses of gas during the birth of the universe. While their existence has not been established with certainty, primordial black holes have in the past been suggested as a possible solution to the dark matter mystery. Because there's so little evidence of them, though, the "dark matter is primordial black holes" hypothesis has not gained a large following among scientists.
The LIGO findings, however, raise the prospect anew, especially as the objects detected in that experiment conform to the mass predicted for dark matter. Predictions made by scientists in the past held that conditions at the birth of the universe would have produced lots of these primordial black holes distributed roughly evenly in the universe, clustering in halos around galaxies. All this would make them good candidates for dark matter.
The Johns Hopkins team calculated how often these primordial black holes would form binary pairs, and eventually collide. Taking into account the size and elongated shape believed to characterize primordial black hole binary orbits, the team came up with a collision rate that conforms to the LIGO findings.
"We are not proposing this is the dark matter," said one of the authors, Marc Kamionkowski, the William R. Kenan Jr. Professor in the Department of Physics and Astronomy. "We're not going to bet the house. It's a plausibility argument."
More observations from LIGO and other evidence would be needed to support the hypothesis, including further detections like the one announced in February. That could suggest greater abundance of objects of that signature mass.
"If you have a lot of 30-mass events, that begs an explanation," said co-author Ely D. Kovetz, a postdoctoral fellow in physics and astronomy at Johns Hopkins. "That the discovery of gravitational waves could be connected to dark matter" is creating lots of excitement among astrophysicists, he said.
"It's got a lot of potential," Kamionkowski said.

Story Source:
The above post is reprinted from materials provided by Johns Hopkins University. Note: Materials may be edited for content and length.

Journal Reference:
  1. Simeon Bird, Ilias Cholis, Julian B. Muñoz, Yacine Ali-Haïmoud, Marc Kamionkowski, Ely D. Kovetz, Alvise Raccanelli, Adam G. Riess. Did LIGO Detect Dark Matter? Physical Review Letters, 2016; 116 (20) DOI: 10.1103/PhysRevLett.116.201301

Comments

Popular posts from this blog

sxhkd volume andbrightness config for dwm on void

xbps-install  sxhkd ------------ mkdir .config/sxhkd cd .config/sxhkd nano/vim sxhkdrc -------------------------------- XF86AudioRaiseVolume         amixer -c 1 -- sset Master 2db+ XF86AudioLowerVolume         amixer -c 1 -- sset Master 2db- XF86AudioMute         amixer -c 1 -- sset Master toggle alt + shift + Escape         pkill -USR1 -x sxhkd XF86MonBrightnessUp          xbacklight -inc 20 XF86MonBrightnessDown          xbacklight -dec 20 ------------------------------------------------------------- amixer -c card_no -- sset Interface volume run alsamixer to find card no and interface names xbps-install -S git git clone https://git.suckless.org/dwm xbps-install -S base-devel libX11-devel libXft-devel libXinerama-devel  vim config.mk # FREETYPEINC = ${X11INC}/freetype2 #comment for non-bsd make clean install   cp config.def.h config.h vim config.h xbps-install -S font-symbola #for emoji on statusbar support     void audio config xbps-i

Hidden Wiki

Welcome to The Hidden Wiki New hidden wiki url 2015 http://zqktlwi4fecvo6ri.onion Add it to bookmarks and spread it!!! Editor's picks Bored? Pick a random page from the article index and replace one of these slots with it. The Matrix - Very nice to read. How to Exit the Matrix - Learn how to Protect yourself and your rights, online and off. Verifying PGP signatures - A short and simple how-to guide. In Praise Of Hawala - Anonymous informal value transfer system. Volunteer Here are five different things that you can help us out with. Plunder other hidden service lists for links and place them here! File the SnapBBSIndex links wherever they go. Set external links to HTTPS where available, good certificate, and same content. Care to start recording onionland's history? Check out Onionland's Museum Perform Dead Services Duties. Introduction Points Ahmia.fi - Clearnet search engine for Tor Hidden Services (allows you

download office 2021 and activate

get office from here  https://tb.rg-adguard.net/public.php open powershell as admin (win+x and a ) type cmd  goto insall dir 1.         cd /d %ProgramFiles(x86)%\Microsoft Office\Office16 2.           cd /d %ProgramFiles%\Microsoft Office\Office16 try 1 or 2 depending on installation  install volume license  for /f %x in ('dir /b ..\root\Licenses16\ProPlus2021VL_KMS*.xrm-ms') do cscript ospp.vbs /inslic:"..\root\Licenses16\%x" activate using kms cscript ospp.vbs /setprt:1688 cscript ospp.vbs /unpkey:6F7TH >nul cscript ospp.vbs /inpkey:FXYTK-NJJ8C-GB6DW-3DYQT-6F7TH cscript ospp.vbs /sethst:s8.uk.to cscript ospp.vbs /act Automatic script (windefender may block it) ------------------------------------------------------------------------------------------------------------------- @echo off title Activate Microsoft Office 2021 (ALL versions) for FREE - MSGuides.com&cls&echo =====================================================================================&