What Are Gravitational Waves And Why Do They Matter?
If we detect them, it could mean a lot about the universe

What are gravitational waves?
Gravitational waves are disturbances in the fabric of spacetime. If you drag your hand through a still pool of water, you'll notice that waves follow in its path, and spread outward through the pool. According to Albert Einstein, the same thing happens when heavy objects move through spacetime.
But how can space ripple? According to
Einstein's general theory of relativity, spacetime isn't a void, but
rather a four-dimensional "fabric," which can be pushed or pulled as
objects move through it. These distortions are the real cause of
gravitational attraction. One famous way of visualizing this is to take a
taut rubber sheet and place a heavy object on it. That object will
cause the sheet to sag around it. If you place a smaller object near the
first one, it will fall toward the larger object. A star exerts a pull
on planets and other celestial bodies in the same manner.
While the rubber sheet analogy is not an exact representation
of how spacetime works, it demonstrates that what we think of as a void
can be visualized as a dynamic substance. Any accelerating body should
create ripples in this substance. But small ripples would fade out
relatively quickly. Only incredibly massive objects—such as neutron
stars or black holes—will create gravitational waves that continue to
spread all the way to Earth.How can we detect them?

Matt Heintze/Caltech/MIT/LIGO Lab
Inside LIGO
A LIGO technician inspects one of the interferometer's mirrors.
LIGO aims to detect these changes using an instrument called an interferometer. This device splits a single laser beam into two and sends both beams shooting off perpendicularly to each other. If the beams travel equal distances, bounce off mirrors, and come back, the waves that make them up should still be in alignment when they return. But a passing gravitational wave can actually change the distance of each arm, which would change the distance that each beam travels relative to its sibling. When the beams return to their source, scientists would be able to detect this change. However, gravitational waves change the length of the interferometer's arms by an incredibly tiny amount: roughly 1/10,000th the width of an atom's nucleus. To pick up such a tiny change, LIGO must filter out all other sources of noise, including earthquakes and nearby traffic. Although LIGO found no gravitational waves in nearly a decade of operation, its recent upgrade to Advanced-LIGO should give it a better chance.
Advanced-LIGO will have to compete with the European Space Agency's (ESA) Laser Interferometer Space Antenna, or LISA. LISA, which will act like a giant LIGO in space, is getting a dry run this year—the ESA launched the LISA Pathfinder in December. It will stay in space for a few months to test the technology that will eventually be deployed in future LISA missions.
But lasers aren't the only way to detect
changes in spacetime. For example, the North American Nanohertz
Observatory for Gravitational Waves, or NANOGrav, looks for
gravitational waves by looking at the bursts of radio waves emitted by
the neutron stars called pulsars.
These radio wave pulses are normally strictly timed, so if they arrive
early or late, it could be because a gravitational wave interfered with
their journey to Earth.

Steffen Richter, Harvard University
The BICEP2 Telescope At Twilight
In March 2014, the BICEP2 telescope announced the detection of gravitational waves from the Big Bang. Unfortunately, the finding didn't pan out.
What's the point of finding gravitational waves?
Well, gravitational waves give us another way to observe space. For example, waves from the Big Bang would tell us a little more about how the universe formed. Waves also form when black holes collide, supernovae explode, and massive neutron stars wobble. So detecting these waves would give us a new new insight into the cosmic events that produced them.
Finally, gravitational waves could also help
physicists understand the fundamental laws of the universe. They are, in
fact, a crucial part of Einstein's general theory of relativity.
Finding them would prove that theory—and could also help us figure out where it goes astray. Which could lead to a more accurate, more all-encompassing model, and perhaps point the way toward a theory of everything.
- Get link
- Other Apps
Comments
Post a Comment